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The conditions for the onset of convection during protein crystalization from a solution are studied theo-
retically on the basis of diffusion-convection evolution equations for the concentrations coupled to the Navier-
Stokes equation describing the flow velocity. We consider that the density of the solution depends on the
concentration of two species, namely, a protein and a precipitating agent, a salt. While the protein is crystal-
lized at the crystal/solution interface, the salt is rejected, and these mechanisms are described by means of
boundary conditions for the interface. We find the base profiles for both protein and salt concentrations and
perform a linear stability analysis of this basic state with regard to buoyancy induced perturbations. This gives
information on the critical diameter of capillaries above which convection may be observed, as well as on the
influence of the speed of growthV of the crystal interface on the stability of the system. Numerical integration
of the model shows good agreement with the predictions of the linear stability analysis.
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I. INTRODUCTION

In recent years many experiments have been carried out in
space to grow protein crystals of improved quality(review in
Refs.[1,2]). Growth of protein crystals in microgravity con-
ditions may, ideally, decrease the number of defects in the
crystal thanks to the absence of convection in the solution.
Such convection arises in the case of crystals growing from
solution because of the presence of a depletion zone around
the crystals[3]. Indeed, when a crystal grows, it depletes the
solution around it as protein is incorporated into the crystal.
A density gradient is therefore installed in the depletion zone
where the protein concentration changes gradually from its
value at the crystal interface up to the bulk concentration.
These density gradients may thus cause the onset of convec-
tive instability if gravitational acceleration is not perpendicu-
lar to the density gradient. Such a buoyancy-driven instabil-
ity has been observed both experimentally[4] and in
numerical simulations of protein crystal growth[5,6]. In
crystal growth experiments performed in microgravity mo-
tions of the crystals in different directions have been ob-
served[7,8], which could be evidence of convection. It is
thus important to be able to predict and avoid the conditions
for onset of convection both on Earth and in microgravity
conditions. In particular, it is important to have insight into
the influence of the peculiarities of the protein at hand as
well as of the presence of a precipitating agent such as a salt,
for instance, on the buoyancy driven instability. To do so, we
perform a linear stability analysis of a two-variable(the pro-
tein and a salt) diffusion-convection model of protein crystal
growth taking the kinetics of the crystallization into account
through boundary conditions at the crystal-solution interface.

Modeling protein crystal growth is a difficult task, as
many factors and steps have to be taken into account, such as
nucleation, dissolution, growth, etc. However, a simpler ap-

proach can be taken which focuses on an already growing
crystal and studies the fluid dynamics interplay with the
solution/crystal interface[5]. The nucleation process is thus
not considered here as we start with a crystal already grow-
ing in the reactor. The system is taken as isothermal and
since at this stage morphological instabilities are not consid-
ered, the interface solution/crystal is flat. To focus on buoy-
ancy induced fluid motions in the solution, we take into ac-
count the fact that both protein and salt concentrations
contribute to density variations. The protein crystallizes at
the interface causing the appearance of a protein depleted
zone in the solution in the region close to the solution. The
salt, on the other hand, is rejected at the interface leading to
a slight increase in the salt concentration close to the crystal.
These effects are introduced in our model via boundary con-
ditions at the interface which also take into account the in-
corporation of protein by the crystal and the flow of protein
to its surface. The aim of this paper is to study the convective
instability in such a system. In order to do so, we perform a
linear stability analysis of the base state of our model with
regard to buoyancy induced convection in order to predict
regions in the parameter space where convective instability
is expected to occur. Results of our stability analysis are then
confronted to nonlinear simulations. This gives insight into
the influence of parameters such as the kinetic coefficientb
(related to the growth speedV of the crystal/solution inter-
face) or the diameter of the capillaries in which crystalliza-
tion takes place on the onset of convection.

This article is organized as follows. In Sec. II, we set up
the model at the basis of our theoretical analysis. We estab-
lish its base state in Sec. III. We then perform a linear sta-
bility analysis of this base state with regard to convection in
Sec. IV and discuss dispersion curves in Sec. V. The results
of the linear stability analysis are confronted to nonlinear
simulations in Sec. VI before we conclude.

II. THE MODEL

We consider a two-dimensional system consisting of a
semi-infinite reactor as shown in Fig. 1. An already growing*Electronic address: dlima@ulb.ac.be
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crystal with a flat surface perpendicular to directionz grows
upwards with growth velocityV. In a frame of reference
moving with velocityV the governing equations are

= ·u = 0, s1d

] u

] t
+ su · = du − V

] u

] z
= −

=p

r0
+ n=2u −

rsC1,C2d
r0

gk,

s2d

] C1

] t
+ su · = dC1 − V

] C1

] z
= D1=2C1, s3d
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] t
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] z
= D2=2C2, s4d

rsC1,C2d = r0f1 + b1sC1 − C1
`d + b2sC2 − C2

`dg, s5d

where Eq.(1) is the continuity equation, Eq.(2) is Navier-
Stokes equation in the Boussinesq approximation giving the
evolution of the two-dimensional fluid velocityu=sux,uzd.
Equations(3) and(4) are the diffusion-convection equations
for proteinC1 and saltC2 concentrations in the solution(ex-
pressed here in g/cm3). C1

` andC1
` are the bulk protein and

salt concentrations, which remain constant and that we use
here as reference concentrations. The densityr of the solu-
tion is supposed to vary linearly with the concentrations.r0
is the density of the bulk solution(i.e., the density when
C1=C1

` andC2=C2
`) while b1 andb2 are the solutal expan-

sion coefficient for protein and salt, respectively.D1 andD2
are the protein and salt diffusion coefficients,n is the kine-

matic viscosity, andg the gravitational acceleration. This
system must be completed by boundary conditions at the
interface between the crystal and the solutionsz=0d and in
the bulk sz=`d. We know that the protein is being crystal-
lized and that this process creates a protein depleted zone at
the interface[5]. On the other hand, salt is being rejected at
the interface. The boundary conditions for the protein con-
centration at the interface which incorporate the kinetics can
be written as[9]

D1
] C1

] z
= rsC1

c − C1dV, s6d

D1
] C1

] z
= bsC1 − C1

eqd, s7d

whereC1
c is the concentration of the protein in the crystal and

r=rc/rs is the ratio of the crystalrc and solutionrs densi-
ties. C1

eq is the equilibrium concentration, i.e., the solubility,
while C1 is here the protein concentration measured at the
interface, i.e.,C1uz=0. Equation(6) expresses the conservation
of mass for the protein in the sense that the normal diffusion
flux [left-hand side of Eq.(6)], is proportional to the normal
growth rate of the crystalV. Equation(7) accounts for the
incorporation of protein by the crystal which depends onb,
the kinetic coefficient.b characterizes the rate at which mol-
ecules are incorporated at the interface. The interface veloc-
ity or crystal growth rate can be found from Eq.(6) and (7)
to be equal to

V =
bsC1 − C1

eqd
rsC1

c − C1d
. s8d

V may fluctuate locally on the interface, but for the purposes
of this work we consider it as constant over the whole inter-
face. For the salt, conservation of mass at the growing face
leads to the following boundary condition at the interface:

D2
] C2

] z
= sk − 1dC2V, s9d

wherek is the salt segregation coefficient. Salt is being re-
jected at the interface, therefore 1,k,0. C2 here is the salt
concentration measured at the interface. This condition al-
lows one to know how much of the salt arriving at the inter-
face[left-hand side of Eq.(9)] is being rejected by it[right-
hand side of Eq.(9)].

Other conditions at the interface are that the normal com-
ponent of the fluid velocity and its derivatives vanish at the
interface

uz = 0, s10d

] uz

]z
= 0, s11d

while at infinity in the bulk, we have

uz = 0, s12d

FIG. 1. Sketch of the semi-infinite reactor.
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C1 = C1
`, s13d

C2 = C2
`. s14d

III. THE STEADY-STATE

The system admits a convectionless steady-state solution
for which the fluid velocity isu=uS=0. The superscriptS is
used to indicate steady state. The concentration fields can be
found from Eqs.(3) and(4) along with the conditions at the
interface and at infinity. They lead to

C1
Sszd = C1

` −
bsC1

` − C1
eqd

sb + Vd
es−V/D1zd s15d

and

C2
Sszd = C2

` + C2
` s1 − kd

k
ef−sV/D2dzg. s16d

At the interfacesz=0d we have

C1
Ss0d = C1

` −
bsC1

` − C1
eqd

sb + Vd
, s17d

C2
Ss0d = C2

` + C2
` s1 − kd

k
. s18d

To obtain explicitely the basic profiles, we fix the protein
concentration at the interfaceC1

Ss0d using data from Ref.[5],
compute the growth velocityV of the crystal using Eq.(8)
and the protein concentration in the bulk using Eq.(17).
Then we fix the salt concentration in the bulk and from Eqs.
(15) and (16) we find the basic profiles. Typical values for
the protein solubility, the salt segregation coefficient and the
diffusion coefficients for salt and protein are given for
lysozyme in Table I.

The governing equations and the boundary conditions can
be rescaled in order to obtain a nondimensional system using

as characteristic lengthL=D1/V and time t=D1/V2. The
new dimensionless variables are hencer* =r /L,
u* =u /V, p* =sD1/mV2dp, t* = t /t, and Cj

* =sCj −Cj
`d /Cj

`,
where
m=r0n. The new equations are(after dropping the stars):

= ·u = 0, s19d
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] z
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s20d
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] t
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] Cj

] z
=

Dj

D1
=2Cj , s21d

where j =1,2 for protein and salt, respectively.Sc=n /D1 is
the Schmidt number and

R1 =
L3b1gC1

`

nD1
, s22d

R2 =
L3b2gC2

`

nD1
, s23d

are the Rayleigh numbers. At the interface, the boundary
conditions in dimensionless form become

] C1

] z
=

b

V
SC1 + 1 −

C1
eq

C1
` D , s24d

] C2

] z
=

D1

D2
sk − 1dsC2 + 1d, s25d

uz = 0, s26d

] uz

] z
= 0, s27d

and at infinity

TABLE I. Values of the constants for lysozyme in water[5].

Symbol Value

C1
c protein concentration in the protein crystal 0.82 g/cm3

rc crystal density 1.233 g/cm3

rs solution density 1.020 g/cm3

D1 protein diffusion coefficient 1.06 10−6 cm2/s

D2 salt diffusion coefficient 1.47 10−5 cm2/s

n kinematic viscosity 1.53 10−2 cm2/s

C1
eq lysozyme solubility

sT=12 °C,pH=4.5,2.5% NaCld
0.0031 g/cm3

r rc/rs 1.21

b1 solutal expansion coefficient for the protein 0.3 cm3/g

b2 solutal expansion coefficient for the salt 0.6 cm3/g

g0 gravitational acceleration on Earth 981 cm/s2

k salt segregation coefficient 0.9
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uz = 0, s28d

C1
` = C2

` = 0. s29d

The pressure dependence in the Navier-Stokes equation can
be eliminated by taking twice the curl of Eq.(20) which
leads to

Sc
−1F ] ¹2u

] t
− = f= · su · = dug + =2su · = du −

] =2u

] z
G

= =4u − R1
]2C1

] x2 − R2
]2C2

] x2 . s30d

The nondimensional form of the steady-state solution is
given by

C1
Sszd = −

bsC1
` − C1

eqd
C1

`sb + Vd
es−zd s31d

and

C2
Sszd =

s1 − kd
k

ef−sD1/D2dzg. s32d

IV. LINEAR STABILITY ANALYSIS

The typical profiles of the nondimensional concentrations
are shown in Fig. 2. The protein profile shows the protein
depletion close to the interface, whereas the salt profile is
characterized by a higher salt concentration close to the in-
terface due to rejection of salt by the growing face.

Let us now analyze the stability of these base state pro-
files with regard to buoyantly induced convection. In order to
do so, we write the velocity and concentrations as a super-
position of the steady-state solution and perturbations

sux,uzd = uS+ esU,Wd, s33d

C1 = C1
S+ eG1, s34d

C2 = C2
S+ eG2. s35d

These equations are substituted into Eqs.(21) and(30), as
well as into the rescaled boundary conditions. The resulting
equations are linearized ine. This leads to the following
system of equations for the perturbations:

S ]2

] z2 +
]2

] x2 +
]

] z
−

]

] t
DG1 = − C1

SszdW, s36d

SD2
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]
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] t
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C2
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S ]2
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]2

] x2DS ]2
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]2

] x2 + Sc
−1 ]

] z
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−1 ]

] t
DW

= R1
]2G1

] x2 + R2
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At the interface

W=
dW

dz
= 0, s39d

] G1

] z
−

b

V
G1 = 0, s40d

] G2

] z
+

D1

D2
s1 − kdG2 = 0, s41d

while at infinity

W= 0, G1 = 0, G2 = 0. s42d

We then expressW, G1, andG2 as normal modes

W= Fszde−ikxest, s43d

G1 = C1szde−ikxest, s44d

G2 = C2szde−ikxest, s45d

wherek is the wave number of the transverse perturbation
ands its growth rate. Substituting these normal modes in the
equations for the perturbations, we finds as the solution of
an eigenvalue problem given by

S d2

dz2 +
d

dz
− k2DC1 + C1

SszdF = sC1, s46d

SD2

D1

d2

dz2 +
d

dz
−

D2

D1
k2DC2 +

D1

D2
C2

SszdF = sC2, s47d

k2R1C1 + k2R2C2 + S d2

dz2 − k2DS d2

dz2 + Sc
−1 d

dz
− k2DF

= sSc
−1S d2

dz2 − k2DF, s48d

and the boundary conditions at the interface

FIG. 2. Profiles of initial nondimensional concentrations forb
=1.0310−4 cm/s [Eqs.(31) and (32)].
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F =
dF
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= 0, s49d
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−

b

V
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] C2

] z
+
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D2
s1 − kdC2 = 0, s51d

while at infinity

F = 0, C1 = 0, C2 = 0. s52d

Equations(46)–(48) can be written as

L3C1

C2

F
4 = s31 0 0

0 1 0

0 0 H
43C1

C2

F
4 , s53d

where

H = Sc
−1S d2

dz2 − k2D , s54d

and the elements of the matrix/differential operatorL are
given by

L11 =
d2

dz2 +
d

dz
− k2, s55d

L13 =
− bsC1

` − C1
eqd

C1
`sb + Vd

es−zd = C1
Sszd, s56d

L22 =
D2

D1

d2

dz2 +
d

dz
−

D2

D1
k2, s57d

L23 =
D1

D2

s1 − kd
k

es−D1/D2zd =
D1

D2
C2

Sszd, s58d

L31 = k2R1, s59d

L32 = k2R2, s60d

L33 = S d2

dz2 − k2DS d2

dz2 + Sc
−1 d

dz
− k2D , s61d

andL12=L21=0.

V. DISPERSION RELATIONS

The eigenvalue problem Eq.(53) is solved numerically by
means of a second-order central finite-differencing scheme to
approximateL and H with their discrete analogsL and H,
respectively. We are then left with a generalized eigenvalue
problem. However, multiplying the last equation of the dis-
crete version of Eq.(53) by H−1 we obtain a simple eigen-
value problem. More specifically, ifA1, A2, andA3 are the
discrete representations ofC1, C2, andF, respectively, the

matrix eigenvalue problem has the formMA=sA, i. e.:

3 L11 0 L13

0 L22 L23

H−1L31 H−1L32 H−1L33
43A1

A2

A3
4 = s3A1

A2

A3
4 . s62d

The complicated differential eigenvalue problem is so re-
placed by a much simpler matrix eigenvalue problem. We
obtain the eigenvalues and eigenvectors ofM using theDG-

EEVX solver of theLAPACK package. We have calculateds
for the parameters of Table I both forg0, as well as for
microgravity s10−6 g0d. Once the base state profiles are cal-
culated they are inserted into the eigenvalue problem and the
spectrum of eigenvalues is calculated as a function of the
wave numberk. We then come back to dimensional variables
and plot the dimensional dispersion curvesd= fskdd, where
sd=s /t andkd=k/L. A typical dispersion curve plotting the
largest eigenvalue of the spectrumsd=sdskdd is shown in
Fig. 3 for microgravity conditions. There is a band of un-
stable modes for whichsd.0. The most unstable wave
number iskmax

d , corresponding to the mode with largest posi-
tive growth ratesmax

d . Convection will appear on a time scale
T=2p /smax

d giving a pattern with initial wavelengthl
=2p /kmax

d . The critical wave numberkc
d above which all

modes are stablessd,0d provides information on the di-
mensional critical radiusdc of the system below which no
convection will set in:

dc =
2p

kc
d . s63d

Thus, even if a convective instability is expected to occur,
the instability will not be observed if the reactor is not wide
enough to allow the formation of at least one convection roll.
For proteins growing in capillaries of diameterd, typically, if
d,dc convection will not be observed.

FIG. 3. Dimensional dispersion relation forb=1.3 10−4 cm/s
andg=10−6 g0.

CONVECTIVE INSTABILITY IN PROTEIN CRYSTAL GROWTH PHYSICAL REVIEW E70, 021603(2004)

021603-5



As an example, in microgravity conditions and for param-
eter values typical of lysozyme(see Table I), we find dc
<30 mm for b<10−8 cm/s, which leads to the conclusion
that even though the system is unstable, convection rolls
would only be observed in reactors with a width greater than
this dc. This is an indication of how unlikely it is to observe
buoyancy-driven convection during growth of lysozyme
crystals in microgravity, since these crystals themselves have
a width of the order of the millimeter[1]. On earth, for the
same parameters, we finddc<1 mm forb<10−8 cm/s, thus
convection is then observable in much thinner reactors, and
for realistic crystal sizes.

Let us now analyze how the kinetic coefficientb (typical
to each protein) can affect the stability of the system with
regard to convection. Figure 4 shows the dispersion relation
for different values ofb on earth. First of all, the range of
unstable wave numbers is much larger than that in micro-
gravity conditions, which is normal. For lysozyme, the cor-
responding critical diameterdc below which no convection
would set in isdc<0.1 mm forb1=10−4 cm/s. This clearly
shows how unavoidable convection is on Earth.

Dispersion curves give thus an interesting understanding
of the influence of the nature of protein(via their kinetic
coefficient b) on convection. Increasingb leads to an in-
crease in the growth velocityV of the crystal and to a larger
band of unstable modes. As expected a larger growth veloc-
ity V leads to a more unstable regime, since faster growth
implies more rapid incorporation of proteins into the crystal
and hence a given density difference between the crystal sur-
face and the bulk operating on a smaller distance. As Fig. 5
shows, a larger growth velocity implies therefore a greater
density gradient, which enhances the strength of the convec-
tive instability [9]. In the current system, it is oberved that
indeed, when the kinetic coefficient is decreased the system
is more stable. The instability threshold depends thus
strongly on the kinetic coefficient. We note also that the pres-

ence of the salt does not alter the dispersion relation signifi-
cantly, in agreement with Ref.[5]. This can be explained by
the small influence of the salt concentration on the density
profile, since the gradient of the salt concentration is much
smaller than that for the protein concentration(see Fig. 2)
while their solutal expansion coefficient is of the same order.

VI. NONLINEAR DYNAMICS

We have next numerically integrated the Navier-Stokes
and diffusion-convection equations for salt and protein. Our
code uses a finite-difference method and uniform mesh for
the discretization of the system. The new protein and salt
concentrations are calculated at each time step, as well as a
tentative velocity field that is calculated neglecting the pres-
sure gradient. The pressure field is then calculated from a
Poisson equation by means of a successive over relaxation
(SOR) method. Then the velocity is updated taking into ac-
count the pressure contribution. The numerical results pre-
sented here are for the parameters in Table I andg0. The
initial conditions are the convectionless steady state. To
check the accuracy of the code, we have tested that it repro-
duces the results of Linet al. [5]. We have then integrated
the nonlinear equations for a quite large system to compare
the spontaneous wavelength of the instability appearing in
the nonlinear simulations with the one predicted by the linear
stability analysis. We take therefore a system of size 2.8 cm
large and 0.9 cm height with no-slip and no-flux boundary
conditions for the velocity and the concentration fields, re-
spectively, at the lateral sides of the reactor. Conditions
(24)–(27) are used at the lower boundary representing the
crystal surface while conditions(28) and (29) are applied at
the upper boundary. Figure 6 shows the stream function iso-
lines in such a geometry forb=5 10−5 cm/s for which the
linear stability analysis of Fig. 4 predicts that the wavelength
of the convective pattern to appear at onset is equal tolmax
=2p /kmax

d ,0.30 cm. Figure 6 shows that roughly 20 rolls
(10 wavelengths) appear in the length of 2.8 cm which gives
a wavelength of the convection pattern of the order of 0.28
cm in quite good agreement with the linear stability analysis.

FIG. 4. Dimensional dispersion relation forg=g0 and different
kinetic coefficients(and hence different growth velocitiesV), where
bI .bII .bIII sbI =1.0310−4 cm/s, bII =5310−5 cm/s, andbIII

=3310−5 cm/sd.

FIG. 5. Dimensionless density profiles for different growth ve-
locities. The values ofb are the same as in Fig. 4 where
bI .bII .bIII sbI =1.0310−4cm/s, bII =5310−5cm/s, andbIII

=3310−5cm/sd.
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The same simulation done forb=1.0 10−4 cm/s provides a
convection pattern of wavelength equal to 0.21 cm. This re-
sult of a nonlinear simulation is again in good agreement
with the predictions given by the dispersion curve of Fig. 4
and, in addition, confirms that increasingb leads to smaller
wavelengths(i.e., larger most unstable wave number) and
thus to destabilization of the system with regard to convec-
tion.

The above simulations were made in a quite large reactor
to minimize the effect of lateral boundaries and verify the
adequacy with the linear stability analysis. In reality, it is,
however, unlikely to find crystals that can span such large
systems. Such a situation can only be realized in thin capil-
laries of diameter of the size of realistic values of crystals
say 0.5 cm. On Fig. 7(top) we show distorted convective
rolls for a system with a moderate width that does not match
a multiple of the natural wavelength of the instability. The
convective rolls are more regular when the width is closer to
a multiple of the natural wavelength[Fig. 7 (bottom)]. Non-
linear simulations confirm that systems of width smaller than
the critical value of the diameter computed by the linear
stability analysis feature a stable situation and no convection.

VII. CONCLUSIONS

We have performed a linear stability analysis of the basic
protein and salt profiles during protein crystallization in a
two-dimensional semi-infinite reactor. This allows us to pre-

dict a critical width of the reactor above which convective
instability may be observed. The linear stability analysis al-
lows us also to investigate the importance of different param-
eters of our model. In particular, we have found that increas-
ing the value of the kinetic coefficient leads to systems that
are more unstable.

The numerical integration of the Navier-Stokes and
diffusion-convection equations show good agreement with
our predictions. This is an evidence that even though our
calculations were carried out for a semi-infinite system, our
predictions also remain valid for reactors the size of which
are of the order of the wavelength of the convection roll.
Work is in progress to take into account crystals with other
geometries.
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