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Convective instability in protein crystal growth
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The conditions for the onset of convection during protein crystalization from a solution are studied theo-
retically on the basis of diffusion-convection evolution equations for the concentrations coupled to the Navier-
Stokes equation describing the flow velocity. We consider that the density of the solution depends on the
concentration of two species, namely, a protein and a precipitating agent, a salt. While the protein is crystal-
lized at the crystal/solution interface, the salt is rejected, and these mechanisms are described by means of
boundary conditions for the interface. We find the base profiles for both protein and salt concentrations and
perform a linear stability analysis of this basic state with regard to buoyancy induced perturbations. This gives
information on the critical diameter of capillaries above which convection may be observed, as well as on the
influence of the speed of growthof the crystal interface on the stability of the system. Numerical integration
of the model shows good agreement with the predictions of the linear stability analysis.
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[. INTRODUCTION proach can be taken which focuses on an already growing
] ) crystal and studies the fluid dynamics interplay with the
In recent years many experiments have been carried out i§p|ution/crystal interfac5]. The nucleation process is thus

space to grow protein crystals of improved qualfipview in - not considered here as we start with a crystal already grow-
Refs.[1,2]). Growth of protein crystals in microgravity con- ing in the reactor. The system is taken as isothermal and
ditions may, ideally, decrease the number of defects in thgince at this stage morphological instabilities are not consid-
crystal thanks to the absence of convection in the solutiorered, the interface solution/crystal is flat. To focus on buoy-

Such convection arises in the case of crystals growing fronancy induced fluid motions in the solution, we take into ac-
solution because of the presence of a depletion zone arourmbunt the fact that both protein and salt concentrations
the crystalg3]. Indeed, when a crystal grows, it depletes thecontribute to density variations. The protein crystallizes at
solution around it as protein is incorporated into the crystalthe interface causing the appearance of a protein depleted
A density gradient is therefore installed in the depletion zongzone in the solution in the region close to the solution. The
where the protein concentration changes gradually from it§alt, on the other hand, is rejected at the interface leading to
value at the crystal interface up to the bulk concentration Slight increase in the salt concentration close to the crystal.
These density gradients may thus cause the onset of convetl€se effects are introduced in our model via boundary con-
tive instability if gravitational acceleration is not perpendicu- ¢itions at the interface which also take into account the in-

lar to the density gradient. Such a buoyancy-driven instabilSrPoration of protein by the crystal and the flow of protein
ity has been observed both experimental4] and in to its surface. The aim of this paper is to study the convective

numerical simulations of protein crystal grow{.,6]. In instability in such a system. In order to do so, we perform a

crvstal arowth exoeriments performed in microaravit mo_Iinear stability analysis of the base state of our model with
i y fgth tpl in diff P ¢ directi h 9 b y bregard to buoyancy induced convection in order to predict
lons of the crystals In dilierent directions have been o regions in the parameter space where convective instability
served[7,8], which could be evidence of convection. It is

i X X > is expected to occur. Results of our stability analysis are then
thus important to be able to predict and avoid the conditiongonfronted to nonlinear simulations. This gives insight into
for onset of convection both on Earth and in microgravity the influence of parameters such as the kinetic coeffigient
conditions. In particular, it is important to have insight into (related to the growth speed of the crystal/solution inter-

the influence of the peculiarities of the protein at hand asace or the diameter of the capillaries in which crystalliza-
well as of the presence of a precipitating agent such as a sal{gn takes place on the onset of convection.

for instance, on the buoyancy driven instability. To do so, we  Thjs article is organized as follows. In Sec. II, we set up
perform a linear stability analysis of a two-varialttee pro- e model at the basis of our theoretical analysis. We estab-
tein and a sajtdiffusion-convection model of protein crystal |isp, jis base state in Sec. Ill. We then perform a linear sta-
growth taking the kinetics of the crystallization into accountpjity analysis of this base state with regard to convection in
through boundary conditions at the crystal-solution interfacegec. v and discuss dispersion curves in Sec. V. The results

Modeling protein crystal growth is a difficult task, as of the finear stability analysis are confronted to nonlinear
many factors and steps have to be taken into account, such ggnylations in Sec. VI before we conclude.

nucleation, dissolution, growth, etc. However, a simpler ap-
Il. THE MODEL

We consider a two-dimensional system consisting of a
*Electronic address: dlima@ulb.ac.be semi-infinite reactor as shown in Fig. 1. An already growing
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FIG. 1. Sketch of the semi-infinite reactor.

crystal with a flat surface perpendicular to directiogrows
upwards with growth velocityV. In a frame of reference

moving with velocityV the governing equations are
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matic viscosity, andg the gravitational acceleration. This
system must be completed by boundary conditions at the
interface between the crystal and the solutigr0) and in

the bulk (z=). We know that the protein is being crystal-
lized and that this process creates a protein depleted zone at
the interfaceg5]. On the other hand, salt is being rejected at
the interface. The boundary conditions for the protein con-
centration at the interface which incorporate the kinetics can
be written aq9]

dCq
D;—=p(C5-Cy)V,
182 p( 1 1)

(6)
9 _

D
Loz

B(C, - CiY, (7)

whereC{ is the concentration of the protein in the crystal and
p=p°lp3 is the ratio of the crystgh® and solutionp® densi-
ties. C{%is the equilibrium concentration, i.e., the solubility,
while C; is here the protein concentration measured at the
interface, i.e.C,|,-o. Equation(6) expresses the conservation
of mass for the protein in the sense that the normal diffusion
flux [left-hand side of Eq(6)], is proportional to the normal
growth rate of the crystal/. Equation(7) accounts for the
incorporation of protein by the crystal which dependsg)n
the kinetic coefficientB characterizes the rate at which mol-
ecules are incorporated at the interface. The interface veloc-
ity or crystal growth rate can be found from E&) and(7)

to be equal to

_ e
V.u=0, (1) v=BG ®)
P(C1 -Cy
ou, (u-vu- V&_” __vp + V2 - Mgk, V may fluctuate locally on the interface, but for the purposes
dt 9z Po Po of this work we consider it as constant over the whole inter-
(2)  face. For the salt, conservation of mass at the growing face
leads to the following boundary condition at the interface:
aCq dCq )
it A —yZi=io aC
g T VGV EDVG, @) D," 2= (k= 1C, ©
aC, dCy 2 where k is the salt segregation coefficient. Salt is being re-
T u-v )CZ_VE =DV°C,, 4 jected at the interface, therefore<k < 0. C, here is the salt
concentration measured at the interface. This condition al-
p(C1,Cy) = pol 1 + B1(C, — CZ) + By(Co - CI)1, (5) lows one to know how much of the salt arriving at the inter-

where Eq.(1) is the continuity equation, Eq2) is Navier-

face[left-hand side of Eq(9)] is being rejected by ifright-
hand side of Eq(9)].

Stokes equation in the Boussinesq approximation giving the Other conditions at the interface are that the normal com-
evolution of the two-dimensional fluid velocity=(uy,u,).

ponent of the fluid velocity and its derivatives vanish at the

Equations(3) and(4) are the diffusion-convection equations interface
for proteinC; and saltC, concentrations in the solutiqex-

pressed here in g/cin C; andC7 are the bulk protein and u,=0, (10
salt concentrations, which remain constant and that we use

here as reference concentrations. The density the solu- Ju,

tion is supposed to vary linearly with the concentratigns. P 0, (11
is the density of the bulk solutiodi.e., the density when z

C,=C; andC,=C;) while 8, and 3, are the solutal expan- while at infinity in the bulk, we have

sion coefficient for protein and salt, respectivedy. and D,

are the protein and salt diffusion coefficientsis the kine- u,=0, (12
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TABLE |. Values of the constants for lysozyme in wafé.

Symbol Value
c{ protein concentration in the protein crystal 0.82 gfcm
p° crystal density 1.233 g/chn
p° solution density 1.020 g/cn
D, protein diffusion coefficient 1.06 6 cné/s
D, salt diffusion coefficient 1.47 18 cn/s
v kinematic viscosity 1.53 18 cné/s
csa lysozyme solubility 0.0031 g/crd
(T=12 °C pH=4.5,2.5% NaQl
p p°l ps 1.21
B solutal expansion coefficient for the protein 0.3%m
B> solutal expansion coefficient for the salt 0.6%m
do gravitational acceleration on Earth 981 crh/s
K salt segregation coefficient 0.9
C,=C7, (13 as characteristic length=D;/V and time T:Dllv*z. The
new dim§nsionless va*riables are hence:r/lo_c,
C,=Cx. (149 U =U/V, p =(Dy/uV?p, t'=t/7, and C;=(C;-C))/C],
where
m=pov. The new equations al@fter dropping the stays
IIl. THE STEADY-STATE V.-u=0, (19

The system admits a convectionless steady-state solution
for which the fluid velocity isu=uS=0. The superscrips is g 1 ou +Uu-Vyu- Ju =- Vp+VUu-R,Ck-R,CHk,
used to indicate steady state. The concentration fields can be L dt Jz
found from Egs(3) and(4) along with the conditions at the (20)
interface and at infinity. They lead to

aC; aC, D,
. BC{-C) 74 24 _Pige
Cf(z) = Cl - ([;—T -VID,2) (15) ot + (U \% )C 97 D A% C (21)
and wherej=1,2 for protein and salt, respectivel§.=v/D; is
the Schmidt number and
1 _
C3(2=C; + c;we[*wf’z)ﬂ. (16) _L°BigCy
K Ry = VT, (22
1
At the interface(z=0) we have
L°B,9C5
s = o - BCL=CT) Ry=——22, (23
Cl(O) - Cl (B N V) f (17) VDl
are the Rayleigh numbers. At the interface, the boundary
(1-«x) conditions in dimensionless form become
C3(0)=C5+C5 (18) .
9C_B ci
Ci+1-— (29
To obtain explicitely the basic profiles, we fix the protein iz VvV CI
concentration at the interfac(0) using data from Ref/5],
compute the growth velocity of the crystal using Eq(8) dC, _ D,
and the protein concentration in the bulk using Efj7). dz DZ(K D(C+ 1), (25
Then we fix the salt concentration in the bulk and from Egs.
(15) and (16) we find the basic profiles. Typical values for u,=0, (26)
the protein solubility, the salt segregation coefficient and the
diffusion coefficients for salt and protein are given for au,
lysozyme in Table I. e 0, (27)

The governing equations and the boundary conditions can
be rescaled in order to obtain a nondimensional system usirgnd at infinity
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0 =—— —————————————————————————— C2 = C§+ Erz- (35)

These equations are substituted into £Eg84) and(30), as

021

equations are linearized ia. This leads to the following
system of equations for the perturbations:

(&2+a2+a
2 9x% a9z ot

rotein
-0.4 P

)Fl =-Ci(2W, (36)

-0.6

nondimensional concentrations

D, # D, # 4 4 D
| ( 2 # Dy +___)r2:-D—1C§(z)W, 37)
2

-0.8
D, 02 D,9x% dz at

o | > 3 5 S ﬁ+i (92 9 _g19 W
distance from the interface 9 Z2 J X2 9 Z2 J X Sg Jat
FIG. 2. Profiles of initial nondimensional concentrations fr &21“1 J I‘2
=1.0x10% cm/s[Egs.(31) and(32)]. = le 22 (38)
u,=0, (28) At the interface
C;=C;=0. (29) W_E_Q (39
The pressure dependence in the Navier-Stokes equation can
be eliminated by taking twice the curl of E¢R0) which Lﬂ_ér ~0 (40)
leads to gz Vv T
aVau aVau
—1 2
- VI[V-(u-V)ul+Vu-V)u- al'y, D
S [V-( Jul+v<( ) P ,9_22+D_1(1_K)F2=0’ 1)
A #C, #C, . L ’
=Viu- Rl -R——. (30)  while at infinity
ax? X
The nondimensional form of the steady-state solution is W=0, I}=0, I;=0. (42)
given by We then expres®, I';, andI', as normal modes
C — —ikx ot
CS2) = - _BEC-CD) (31) W= d(2)e e, (43)
Cl('B+V) —ikx qot
and I =v,(2e"%e™, (44)
_ —ikx ot
Cg(Z) - (1-x) d-(D1/D2)7] (32) I, =W,(2e™%e”, (45)
K

. well as into the rescaled boundary conditions. The resulting

wherek is the wave number of the transverse perturbation
ando its growth rate. Substituting these normal modes in the
equations for the perturbations, we findas the solution of

IV. LINEAR STABILITY ANALYSIS an eigenvalue problem given by
2

The typical profiles of the nondimensional concentrations (d_ + d_ k2>\lf1 +C(2® = oV, (46)
are shown in Fig. 2. The protein profile shows the protein dZ  dz
depletion close to the interface, whereas the salt profile is
characterized by a higher salt concentration close to the in- Dy d> d
terface due to rejection of salt by the growing face. D1d22 + dz D,

Let us now analyze the stability of these base state pro-
files with regard to buoyantly induced convection. In order to @2 @2 d
do so, we write the velocity and concentrations as a super-  k?R, ¥, + kR, ¥, + (— - k2><— +St— - kz)qa
position of the steady-state solution and perturbations dZ dZ dz

(Uy,uy) = uS+ e(U,W), (33 = 0851<% - k2>¢>, (48)

k2>\112+D—CS(Z)(I> oV, (47

C1=Ci+ely, (34 and the boundary conditions at the interface
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dd
d=—=0, (49)
dz
ov, B
— =V, =0, 50
=7 yot (50)
v, D,
—+—(1-xV¥,=0, 51
PRCRIE (5)

G’ ot sh

while at infinity
&=0, V¥,=0, ¥,=0. (52
Equations(46)—(48) can be written as
v, 10 0w,

Ll W2 =010 1 0\ W, 1, (53 PO T T S TR R B
d 0O OH|® 70 2 4 6 8 10 12
where K em
i d? FIG. 3. Dimensional dispersion relation f@=1.3 104 cm/s
H=& a2 k|, (549 andg=107° g

and the elements of the matrix/differential operatomre  matrix eigenvalue problem has the fovh4d=c A4, i. e.:
given by
L1 0 Liz || Ay Ag

& d
L= ZZ+d——|<2 (55) 0 L Loz || Az2|=0lA2|. (62
H sy H 'Ly H a3 || As Az
- B(C{ -C1% o2 = The complicated differential eigenvalue problem is so re-

S,
137 CI(B+V) =Ci(2), (56) placed by a much simpler matrix eigenvalue problem. We

obtain the eigenvalues and eigenvectordvofising theDc-
D, d EEVX solver of theLAPACK package. We have calculated
Lyo= =2 +———k2 (57) for the parameters of Table | both fay, as well as for
Dy dZ " dz Dy microgravity (10°® go). Once the base state profiles are cal-

culated they are inserted into the eigenvalue problem and the

D1(1 K) o(-D1/D;2) — D, CS( 2, (59) spectrum of eigenvalues is calculated as a function of the
23~ D, « D, wave numbek. We then come back to dimensional variables
and plot the dimensional dispersion curwg=f(k%), where
Loy = K2Ry, (59) o°=a/7andk?=k/L. Atypical dispersion curve plotting the
largest eigenvalue of the spectrumi=o9(k%) is shown in
L= K2R, (60) Fig. 3 for microgravity conditions. There is a band of un-
82 2 stable modes for whichr9>0. The most unstable wave
5 number isk? ., correspondlng to the mode with largest posi-
Las (d_ )( Sc i kZ) (61) tive growth ratezrmax Convection will appear on a time scale
dZ dz T= 277/0 max 9iving a pattern with initial wavelength\
-1 = =2m/Kd . The critical wave numbek above which all
andL1,=121=0. modes are stablésd<0) provides information on the di-
mensional critical radiusl, of the system below which no
V. DISPERSION RELATIONS convection will set in:
The eigenvalue problem E¢b3) is solved numerically by 20
means of a second-order central finite-differencing scheme to de = E (63)

approximateL andH with their discrete analogg and H,

respectively. We are then left with a generalized eigenvalue Thus, even if a convective instability is expected to occur,
problem. However, multiplying the last equation of the dis-the instability will not be observed if the reactor is not wide
crete version of Eq(53) by H ™ we obtain a simple eigen- enough to allow the formation of at least one convection roll.
value problem. More specifically, ifl;, A,, and.A; are the  For proteins growing in capillaries of diametdrtypically, if
discrete representations ¥, ¥,, and®, respectively, the d<d, convection will not be observed.
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0 1
0 100 200 300 400 500 600 locities. The values ofB are the same as in Fig. 4 where
k9 (emY) Bi>By>By  (B=1.0x10%m/s, B,=5%X10"5cm/s, andgy,
=3%x10"°cm/s9.

FIG. 4. Dimensional dispersion relation fgrgy and different
kinetic coefficientgand hence different growth velociti&§, where  ence of the salt does not alter the dispersion relation signifi-
B> B> B (B=1.0x10"*cm/s, B;=5X10"°cm/s, andgy cantly, in agreement with Ref5]. This can be explained by
=3X10°° cm/s. the small influence of the salt concentration on the density
profile, since the gradient of the salt concentration is much
As an example, in microgravity conditions and for param-smaller than that for the protein concentratieee Fig. 2
eter values typical of lysozymésee Table ), we findd,  while their solutal expansion coefficient is of the same order.
~30 mm for B~10® cm/s, which leads to the conclusion
that even though the system is uns_table,_convection rolls VI. NONLINEAR DYNAMICS
would only be observed in reactors with a width greater than
this d.. This is an indication of how unlikely it is to observe ~ We have next numerically integrated the Navier-Stokes
buoyancy-driven convection during growth of lysozyme and diffusion-convection equations for salt and protein. Our
crystals in microgravity, since these crystals themselves haveode uses a finite-difference method and uniform mesh for
a width of the order of the millimeterl]. On earth, for the the discretization of the system. The new protein and salt
same parameters, we fidd=~1 mm for 3~108 cm/s, thus concentrations are calculated at each time step, as well as a
convection is then observable in much thinner reactors, antkntative velocity field that is calculated neglecting the pres-
for realistic crystal sizes. sure gradient. The pressure field is then calculated from a
Let us now analyze how the kinetic coefficigftypical =~ Poisson equation by means of a successive over relaxation
to each proteipcan affect the stability of the system with (SOR method. Then the velocity is updated taking into ac-
regard to convection. Figure 4 shows the dispersion relatiogount the pressure contribution. The numerical results pre-
for different values ofB on earth. First of all, the range of sented here are for the parameters in Table | gndThe
unstable wave numbers is much larger than that in microinitial conditions are the convectionless steady state. To
gravity conditions, which is normal. For lysozyme, the cor-check the accuracy of the code, we have tested that it repro-
responding critical diameted, below which no convection duces the results of Liet al. [5]. We have then integrated
would set in isd,~0.1 mm for3,=10% cm/s. This clearly the nonlinear equations for a quite large system to compare
shows how unavoidable convection is on Earth. the spontaneous wavelength of the instability appearing in
Dispersion curves give thus an interesting understandinghe nonlinear simulations with the one predicted by the linear
of the influence of the nature of proteiwia their kinetic  stability analysis. We take therefore a system of size 2.8 cm
coefficient 8) on convection. Increasing leads to an in- large and 0.9 cm height with no-slip and no-flux boundary
crease in the growth velocity of the crystal and to a larger conditions for the velocity and the concentration fields, re-
band of unstable modes. As expected a larger growth veloespectively, at the lateral sides of the reactor. Conditions
ity V leads to a more unstable regime, since faster growtli24)—27) are used at the lower boundary representing the
implies more rapid incorporation of proteins into the crystalcrystal surface while condition®8) and(29) are applied at
and hence a given density difference between the crystal suthe upper boundary. Figure 6 shows the stream function iso-
face and the bulk operating on a smaller distance. As Fig. $ines in such a geometry fg8=5 10° cm/s for which the
shows, a larger growth velocity implies therefore a greatetinear stability analysis of Fig. 4 predicts that the wavelength
density gradient, which enhances the strength of the conveof the convective pattern to appear at onset is equaltg
tive instability [9]. In the current system, it is oberved that :Zw/k?nax~0.30 cm. Figure 6 shows that roughly 20 rolls
indeed, when the kinetic coefficient is decreased the systeiti0 wavelengthsappear in the length of 2.8 cm which gives
is more stable. The instability threshold depends thus wavelength of the convection pattern of the order of 0.28
strongly on the kinetic coefficient. We note also that the presem in quite good agreement with the linear stability analysis.
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The same simulation done f@=1.0 10* cm/s provides a ! f z :j i‘. 1 (() i:':*; }* 1
convection pattern of wavelength equal to 0.21 cm. This re- ;;;_{I Q,‘:‘:f,/ ,‘Q:‘.;/ \3‘:;;;;
sult of a nonlinear simulation is again in good agreement fospn A= ,’:,‘«—ffg e AL«

with the predictions given by the dispersion curve of Fig. 4
and, in addition, confirms that increasiggleads to smaller FIG. 7. Convective rolls fog=5x 105 cm/s(label Il on Figs.
wavelengths(i.e., larger most unstable wave numpand 4 and 5 and for reactors with a height of 0.3 cm and width equal to
thus to destabilization of the system with regard to convec.45 cm(top) and 0.55 cra= 2\ (boOttom).
tion.

The above simulations were made in a quite |arge reactdﬂict a critical width of the reactor above which convective
to minimize the effect of lateral boundaries and verify theinstability may be observed. The linear stability analysis al-
adequacy with the linear stability analysis. In reality, it is, lows us also to investigate the importance of different param-

however, unlikely to find crystals that can span such largeéters of our model. In particular, we have found that increas-
systems. Such a situation can On|y be realized in thin Cap”mg the value of the kinetic coefficient leads to systems that

laries of diameter of the size of realistic values of crystals2ré more unstable. _ _

say 0.5 cm. On Fig. Ttop) we show distorted convective ~_ The numerical integration of the Navier-Stokes and
rolls for a system with a moderate width that does not matcifliffusion-convection equations show good agreement with
a multiple of the natural wavelength of the instability. The OUr predictions. This is an evidence that even though our
convective rolls are more regular when the width is closer tg@lculations were carried out for a semi-infinite system, our
a multiple of the natural wavelengfFig. 7 (bottom)]. Non- predictions also remain valid for reactors the size qf which
linear simulations confirm that systems of width smaller tharf'® Of the order of the wavelength of the convection roll.
the critical value of the diameter computed by the linearWork is in progress to take into account crystals with other

stability analysis feature a stable situation and no convectiorf€ometries.
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